Galileo, born 7 years before and dying 12 years after Kepler, was well aware of Kepler’s solution concerning complexity about orbit parameters of our sister planet Mars. He refuted till his death, Keplerian elliptical planetary motion as much too complicated. Though a heliocentric advocate as was Kepler, he held that natural curves of an orbit must be circular. This paper explores Galileo’s concept of circular heliocentric planetary motion. I develop a standard model using two plane geometry curves, a unit circle and its construct unit parabola, creating a plane geometry function needed to measure g-field energy curves. It turns out that g-field inverse square energy curves are spherical, can be constructed using NASA sourced observation parameters, build a standard model space and time square, once constructed provide analytics for orbit momentum around our sun and across the g-field time curve, all within reach of STEM HS math. Both curves, his circles and Kepler’s ellipse, can be used to explain gravity field orbit mechanics. (Received September 07, 2013)