Differentiation and absolute continuity are difficult topics for students in a beginning real analysis graduate course or an advanced undergraduate program. We present a simplified approach that has cut almost in half the time previously spent by the author in covering these topics. The time saved is used for a deeper discussion of Hilbert spaces and Fourier analysis. Our simplified approach is based on joint work with Juergen Bliedtner of Frankfurt University. That approach, using a local maximal function, was originally developed to deal with limit theorems in various settings. The advantage gained is that measure derivatives and other limit results can be established just by proving the results for sets where the relevant input vanishes. Our approach also employs a very short proof from first principles of the general Lusin theorem (joint with Erik Talvila), and an optimal covering theorem for the real-line by Jesus Aldaz, extending work of T. Rado. (Received September 08, 2013)