For any $\xi \in \mathbb{C}^*$, the family of linear maps given on homogeneous elements by
\[
\sigma(a \otimes b) = \xi^{\langle a \mid |b\rangle} b \otimes a
\]
defines a braiding on the category of \mathbb{Z}-graded complex vector spaces. If $|\xi| = 1$ due to relation to the (2+1)-dimensional physics (cf. the fractional quantum Hall effect), such a braiding is called an “anyonic braiding”. In this talk, we explore what happens to algebra with anyonic braiding. (Received September 16, 2013)