Let $D \subseteq E$ be an extension of commutative rings with identity, I be a nonzero proper ideal of D, (Γ, \leq) be a strictly totally ordered monoid such that $0 \leq \alpha$ for all $\alpha \in \Gamma$ and $\Gamma^* = \Gamma \setminus \{0\}$. Let $D + \left[E^{\Gamma^* \leq} \right] = \{ f \in \left[E^{\Gamma \leq} \right] \mid f(0) \in D \}$ and $D + \left[I^{\Gamma^* \leq} \right] = \{ f \in \left[D^{\Gamma \leq} \right] \mid \text{the coefficients of nonconstant terms of } f \text{ belong to } I \}$. In this talk, we give some conditions for the rings $D + \left[E^{\Gamma^* \leq} \right]$ and $D + \left[I^{\Gamma^* \leq} \right]$ to be Noetherian or to satisfy the ascending chain condition on principal ideals. (Received September 11, 2013)