Let M be an irreducible algebraic monoid with reductive unit group G. There exists an idempotent cross section Λ of $G \times G$ orbits that forms a lattice under the partial order $e \leq f \iff GeG \subseteq GfG$, where the closure is in the Zariski topology. This cross section lattice is important in describing the structure of reductive monoids. M is said to be J-irreducible when Λ has a unique minimal nonzero element. In this case the cross section lattice is completely determined by the type of the minimal element and the Coxeter-Dynkin diagram of G. In this talk we will provide some combinatorial properties of distributive cross section lattices of J-irreducible monoids. (Received September 16, 2013)