1106-13-2646 Aaron N Brookner* (brookner@mit.edu), 58 Manchester Rd., Brookline, MA 02446, and David Corwin, Steven V Sam and Pavel Etingof. On the Cohen-Macaulayness of S_n -Invariant Subspace Arrangements.

If we let $\lambda = (\lambda_1, \dots, \lambda_r)$ be a partition of an integer n, we can define a certain subspace E_{λ} of \mathbb{C}^n . We then consider $X_{\lambda} = S_n \cdot E_{\lambda}$, the union of S_n -translates of E_{λ} , which is an algebraic variety. This talk is concerned with addressing the question: for which λ are X_{λ} or X_{λ}/S_n Cohen-Macaulay?

While we still lack a complete answer to this question, using representation theory of Cherednik algebras, standard commutative algebra, and computations in the Macaulay2 programming language, we have reached many partial results, including a definite "no" in the case that λ has at least four distinct parts. We also formulate a number of conjectures, and give evidence for a more general claim that X_{λ} is rarely ever Cohen-Macaulay, and when it is, there is some additional structure behind it coming from representation theory and integrable systems. (Received September 16, 2014)