1106-47-801 Paul S. Muhly and Baruch Solel* (mabaruch@tx.technion.ac.il), Department of

Mathematics, Technion, 32000 Haifa, Israel. Matricial function theory and weighted shifts.

Let $H^{\infty}(E)$ be the Hardy algebra of a W^* -correspondence E over a W^* -algebra M. These algebras are generated by a copy of M and shifts (defined by the elements of E). Each element $F \in H^{\infty}(E)$ gives rise to a family $\{\widehat{F}_{\sigma}\}$ of analytic operator valued functions where σ runs over the normal representations of M and \widehat{F}_{σ} is defined on the (open) unit ball of the operator space $E^{\sigma*}$ (associated with E and σ). Such a family exhibit "matricial structure" that we studied in previous works (inspired by works of Joseph Taylor, Kaliuzhnyi-Verbovetskyi and Vinnikov, D. Voiculescu and others).

In this talk I will show that one can study matricial families of operator-valued functions defined on more general matricial sets (not necessarily unit balls) by studying Hardy algebras generated by a copy of M and weighted shifts. This work generalizes some results of G. Popescu. (Received September 07, 2014)