To study the impact of available resource of the health system on the spread and control of dengue fever, I will introduce a deterministic model for the transmission dynamics of the disease incorporating a nonlinear recovery rate reflecting the public health resources. Model results indicated the existence of multiple endemic equilibria; and system exhibits the phenomenon of backward bifurcation as a common feature of vector-borne diseases. Additionally, the can undergo a Hopf bifurcation. The results of this study could be helpful for public health plan the resources essential for control of dengue disease. This is a joint work with Ahmed Abdelrazec, Jacques Belair and Chunhua Shan. (Received September 28, 2015)