The Second Incompleteness Theorem actually makes 2 assertions:

1. Con_Σ states that Σ is consistent;
2. $\Sigma \nvdash \text{Con}_\Sigma$ if $\Sigma \supseteq \Sigma_{\text{PA}}$ is consistent.

(1) had no explicit definiens.

If (1) is—as the definiendum, lacking another statement of place, suggests—related to (the theory of) Σ, then, as we will show, (2) implies non (1), whence (1) & (2) becomes a contradiction in terms. In addition, the generalisation: κ states consistency, cannot be fulfilled at all.

If Σ is decidable, (1) becomes true in $\text{Th} (\mathcal{N})$, the deductively inaccessible theory of arithmetics.

More innately, κ states that Σ is consistent :iff $\Sigma \nvdash \kappa$. Consequently, if Σ is consistent, all of the then existing κ, unprovable from Σ, state this, and, if Σ is inconsistent, no κ states that Σ is consistent. If (1) is interpreted in this way, (1) follows from (2), but Con_Σ is not distinguished from any other $\Sigma \nvdash \kappa$.

Compare the ASL abstract. Joint work with Wilfried Buchholz. (Received September 23, 2015)