The class \(\textbf{No} \) of surreal numbers possesses a rich numerical structure and shares many arithmetic and algebraic properties with the real numbers, and some work has also been done to develop analysis on \(\textbf{No} \). In this talk, we propose surreal definitions of the arctangent and logarithm functions using truncations of Maclaurin series. Moreover, by defining a new topology on \(\textbf{No} \), we obtain the Intermediate Value Theorem even though \(\textbf{No} \) is not Cauchy complete, and we prove that the Fundamental Theorem of Calculus would hold for surreals if a consistent definition of integration exists. (Received September 18, 2015)