Universal cycles and Gray codes lists elements of a combinatorial family in a specific manner, and overlap cycles were introduced as a generalization of these in 2010 by Godbole et al. An \(s \)-overlap cycle orders a set of strings so that the last \(s \) letters of any one string are the first \(s \) letters of the next (in order). In this paper, we study \(s \)-overlap cycles of \(\binom{[n]}{k} \), \(k \)-subsets of the set \([n] = \{1, 2, ..., n\} \), and prove that when \(k > 3s \), \(s \)-overlap cycles of \(\binom{[n]}{k} \) do exist. (Received September 16, 2015)