Let τ be a permutation. Let $\mathcal{NM}_n(\tau)$ denote the set of permutations σ of the symmetric group S_n which have no consecutive τ-matches and let $NM_n(\tau) = |\mathcal{NM}_n(\tau)|$. If α and β are elements of S_j, then we say that α is c-Wilf-equivalent to β if $NM_n(\alpha) = NM_n(\beta)$ for all $n \geq 1$. The main goal of this talk is to introduce refinements of the c-Wilf equivalence relation. We say that α and β are $(\text{stat}_1, \ldots, \text{stat}_k)$-$c$-Wilf equivalent if for all $n \geq 1$,

$$\sum_{\sigma \in \mathcal{NM}_n(\alpha)} \prod_{i=1}^{k} x_i^{\text{stat}_i(\sigma)} = \sum_{\sigma \in \mathcal{NM}_n(\beta)} \prod_{i=1}^{k} x_i^{\text{stat}_i(\sigma)}$$

where $\text{stat}_1, \ldots, \text{stat}_k$ are permutations statistics on permutations. We also give examples of stat-c-Wilf equivalent permutations for $\text{stat} = (\text{des}, \text{inv}, \text{LRmin})$, where $\text{des}(\sigma)$ is the number of descents, $\text{inv}(\sigma)$ is the number of inversions, and $\text{LRmin}(\sigma)$ is the number of left-to-right minima of σ. (Received September 22, 2015)