We say a sequence \(S = (s_n)_{n \geq 0} \) is \textit{primefree} if \(|s_n|\) is not prime for all \(n \geq 0 \) and, to rule out trivial situations, we require that no single prime divides all terms of \(S \). Recently, the first author showed that, for any integer \(a \), there exist infinitely many integers \(k \) such that both of the shifted sequences \(U_a \pm k \) are simultaneously primefree, where \(U_a = (u_n)_{n \geq 0} \) is the Lucas sequence of the first kind defined by

\[
 u_0 = 0, \quad u_1 = 1, \quad \text{and} \quad u_n = au_{n-1} + u_{n-2}, \quad \text{for} \ n \geq 2.
\]

In this talk, we establish an analogous theorem for Lucas sequences \(V_a = (v_n)_{n \geq 0} \) of the second kind, defined by

\[
 v_0 = 2, \quad v_1 = a, \quad \text{and} \quad v_n = av_{n-1} + v_{n-2}, \quad \text{for} \ n \geq 2.
\]

This result provides additional evidence in support of a conjecture of Ismailescu and Shim. (Received September 21, 2015)