On A Simple Recurrence In the Accelerated 3x + 1 Minimum-Inverse Problem.

The aim of this talk is to discuss a simple recurrence within the Accelerated 3x + 1 Minimum-Inverse Map: we will consider the iterates of the function

\[F(3k + t) = \begin{cases}
4k + 1, & t = 1 \\
2k + 1, & t = 2
\end{cases} \]

on the set \(\mathbb{Z} \setminus 3\mathbb{Z} \) where the argument \(3k + t \) is an odd integer.

The talk will analyze the structural properties of rational expressions of the form

\[\sum_{0 \leq u < \tau} 3^u 2^{a(u)} \]

\[\frac{3^{\tau} - 2^{a(\tau)}}{3^{\tau} - 2^{a(\tau)}} \]

where the exponents \(\{a(u)\}_{u=0}^{\tau} \) are non-negative integers; such rationals naturally arise when analyzing the functional orbits of \(F \). This talk will highlight a simple recurrence on the set \(\{0, 1, 2, 3\} \) for generating the 3-adic canonical representations of such rational expressions; not only does this recurrence expedite the computations of such expressions when \(\tau \gg 1 \), but it also reveals a simple and deep connection between all of the iterate values within a functional orbit of \(F \). (Received September 10, 2015)