In rigidity theory, a framework is specified by giving n full-dimensional rigid bodies in R^d and a set of geometric constraints among them. The fundamental question is to determine if the framework is rigid or if it admits relative motions between the bodies. Such a framework has an associated multigraph G encoding the combinatorics of the constraints, a rigidity matrix describing the conditions imposed on infinitesimal motions, and a bracket polynomial P_G that lives in the homogeneous coordinate ring of a certain Grassmannian. The polynomial P_G is the determinant of the rigidity matrix, and the variety it defines consists of special embeddings of the framework with nongeneric behavior. We will discuss how the combinatorics of G can be used to understand the structure of P_G. (Received September 19, 2015)