Let \(\phi(z) \) be a function in the Laguerre-Pólya class. Write \(\phi(z) = e^{-\alpha z^2} \phi_1(z) \) where \(\alpha \geq 0 \) and where \(\phi_1(z) \) is a real entire function of genus 0 or 1. Let \(f(z) \) be any real entire function of the form \(f(z) = e^{-\gamma z^2} f_1(z) \) such that \(\gamma \geq 0 \) and \(f_1(z) \) is a real entire function of genus 0 or 1 having all of its zeros in the strip \(S(r) = \{ z \in \mathbb{C} : -r \leq \text{Im} \, z \leq r \} \) for \(r > 0 \). If \(\alpha \gamma < 1/4 \), the linear differential operator \(\phi(D)f(z) \), where \(D \) denotes differentiation, converges to a real entire function whose zeros also belong the strip \(S(r) \). We discuss necessary and sufficient conditions on \(\phi(z) \) such that all zeros of \(\phi(D)f(z) \) belong to a smaller strip \(S(r_1) = \{ z \in \mathbb{C} : -r_1 \leq \text{Im} \, z \leq r_1 \} \) where \(0 \leq r_1 < r \) and \(r_1 \) depends on \(\phi(z) \) but is independent of \(f(z) \). A linear operator having this property is called a \textit{complex zero strip decreasing operator}. (Received September 12, 2015)