We consider orthogonal polynomials corresponding to a \(q \)-integral on \(\mathbb{R} \). The \(q \)-integral can be written as a sum of two bilateral \(q \)-hypergeometric \(2\psi_2 \)-series, for which an evaluation formula is known due to Slater. The corresponding orthogonal polynomials, which are (limit cases of) big \(q \)-Jacobi polynomials, do not form a basis for the corresponding \(L^2 \)-spaces. A set of functions that complements the orthogonal polynomials to an orthogonal basis can be obtained using spectral analysis of \(q \)-difference operators. These polynomials and their complementing function arise naturally in representation theory of quantum groups. (Received September 14, 2015)