On the controllability and stabilization of the linearized Dispersion Generalized Benjamin-Ono equation on a periodic domain. Preliminary report.

In this talk, solutions of the linearized Dispersion Generalized Benjamin-Ono equation are studied

$$\partial_t u(x, t) + D^{1+a} u(x, t) = f(x, t)$$

for $0 < a < 1$, $x \in [0, 2\pi]$ and $t \geq 0$ where D^{1+a} denotes the homogeneous derivative. We impose that

$$\frac{\partial^k u}{\partial x^k}(0, t) = \frac{\partial^k u}{\partial x^k}(2\pi, t)$$

for $k = 0, 1, 2$ so that the process is 2π-periodic in x, and additionally, it is assumed that the distributed control f is generated by a linear feedback aw conserving the volume $\int_0^{2\pi} u(x, t) dx$. Included in the discussion are the related controllability and stabilizability preliminary results. (Received September 22, 2015)