Let \((z_n)\) be a sequence in the open unit disk and \(T_p\) an operator taking an \(H^p\) function \(f\) to the sequence \((f(z_n)(1-|z_n|)^{1/p})\).

Shapiro and Shields found conditions for the sequence to be interpolating; e.g., the range \(T_p(H^p)\) equals the sequence space \(\ell^p\) and the condition is Carleson’s condition:

\[
\inf_k \prod_{n \neq k} \left| \frac{z_k - z_n}{1 - \overline{z_n}z_k} \right| \geq \delta > 0.
\]

We consider interpolating sequences for model spaces, \(K_{\Theta} := H^2 \ominus \Theta H^2\), associated with an inner function \(\Theta\). If we have a sequence for which the restriction of \(T_2\) maps \(K_{\Theta}\) onto \(\ell^2\), then \(T_2\) will map \(H^2\) onto \(\ell^2\). For which sequences can we be sure that if \(T_2 : H^2 \to \ell^2\) is surjective, then the restriction \(T_2 : K_{\Theta} \to \ell^2\) is surjective?

We answer this for the class of thin sequences – interpolating sequences for which \(\lim_{k \to \infty} \prod_{j,j \neq k} \left| \frac{z_j - z_k}{1 - \overline{z_j}z_k} \right| = 1\). (Received August 29, 2015)