To model leveraged investments such as leveraged ETFs, define the \(\beta \)-leveraged product on a positive semimartingale \(S \) to be the stochastic exponential of \(\beta \) times the stochastic logarithm of \(S \).

In various asymptotic regimes, we relate rigorously the implied volatility surfaces of the \(\beta \)-leveraged product and the underlying \(S \), via explicit shifting/scaling transformations. In particular, a family of regimes with jump risk admit a shift coefficient of \(-3/2\), unlike the previously conjectured \(+1/2\) shift. The \(+1/2\), we prove, holds in a family of continuous stochastic volatility regimes at short expiry and at small volatility-of-volatility. (Received September 22, 2015)