Phillip R. Dukes* (phillip.dukes@utrgv.edu), Phillip R. Dukes, University of Texas Rio Grande Valley, Brownsville, TX 78520. Continuous-time quantum walks over simply connected graphs, amplitudes and invariants.

We examine the time dependent amplitude \(\phi_i(t) \) at each vertex \(i \) of a CTQW on a variety of simply connected graphs. The Lissajous curve of the real vs. imaginary parts of each \(\phi_i(t) \) reveals interesting shapes of the space of time-accessible amplitudes. We find two invariants of CTQW’s. First, considering the rate at which each amplitude evolves in time the quantity \(T = \sum_{i=0}^{n-1} \left| \frac{d\phi_i(t)}{dt} \right|^2 \) is time invariant. The value of \(T \) for any initial state can be minimized with respect to a global phase factor \(e^{i\theta t} \) to some value \(T_{min} \). An operator for \(T_{min} \) is defined. For any simply connected graph \(g \) the highest possible value of \(T_{min} \) with respect to the initial state is found to be \(T_{min}^{max} = \left(\frac{\lambda_{max}}{2} \right)^2 \) where \(\lambda_{max} \) is the maximum eigenvalue in the spectrum of \(g \). A second invariant is found in the time-dependent probability distribution \(P_i(t) = |\phi_i(t)|^2 \) of any initial state satisfying \(T_{min}^{max} \), with these conditions \(\sum_{i=0}^{n-1} \left(P_{i}^{max} - P_{i}^{min} \right)^2 = \frac{4}{n} \) for all simply connected graphs of \(n \) vertices. (Received September 16, 2015)