Designing an introductory undergraduate course in mathematical biology presents a dizzying array of difficult choices for the instructor. What are the learning objectives, both mathematical and biological? How might course content facilitate those learning objectives? Should both deterministic and stochastic models be discussed? How data-driven should the topics be? Is there a suitable textbook? How might the course factor into the students’ future development as scholars?

I want this presentation to gravitate towards an open discussion among audience members regarding strategies, trends, and best practices. As a conversation starter, I will describe how several colleagues and I have designed a rather unusual introductory biomathematics course for students who have completed one year of calculus. In particular, I will relate some of the successes (e.g., persistence of students in quantitative biology, dramatically increased confidence in reading research articles, emergence of long-term undergraduate research projects) and shortcomings (e.g., difficulties of incorporating computation/simulations). In keeping with the session theme, I hope to record and circulate a list of trends and ideas that emerge from our discussion. (Received August 26, 2015)