The ε-metric entropy of a precompact set A in a metric space is the logarithm of the minimum covering number of A by balls of radius ε. In this paper we investigate the metric entropy of the class \(F^d \) of separately convex functions on \([0,1]^d\), that is, the class of multivariate functions on \([0,1]^d\) which are convex in each variable while the others are held fixed. In particular, under some mild assumptions we obtain a sharp estimate on the upper bound of the metric entropy of \(F^d \). We extend our result further to the class \(F^d_g \) of functions which are separately convex upon precomposition with an appropriate, given function g. (Received September 23, 2015)