We consider the Muskat Problem with surface tension in two dimensions over the real line, with H^s initial data and allowing the two fluids to have different densities and viscosities. We take the angle θ between the interface and the horizontal, and derive an evolution equation for it. In the periodic case, Ambrose used energy methods to prove local existence for θ. We extend his methods to the real line, obtaining an energy estimate and proving that a solution θ exists locally and can be continued while $||\theta||_s$ remains bounded and the arc chord condition holds. Furthermore, when the viscosity is constant and the initial data is sufficiently small, we show the energy is non-increasing, and that the solution θ exists globally in time. (Received September 15, 2015)