Factors in graphs, weighted graphs and directed graphs.

A factor is a subgraph that contains all of the vertices of its host graph. For instance, a perfect matching is a factor consisting entirely of disjoint edges and a Hamiltonian cycle is a factor that is a cycle. Many celebrated theorems in graph theory give sufficient conditions for the existence of a specific factor. For example, Dirac’s Theorem states that if G is a graph on n vertices, $n \geq 3$ and the minimum degree of G is at least $n/2$, then G contains a Hamiltonian cycle.

In this talk, we will describe several related theorems for graphs, directed graphs and weighted graphs. For example, we will discuss the following recent result: For every $\varepsilon > 0$ there exists $\gamma > 0$ such that if G is a graph on n vertices, the minimum degree of G is at least $(1/2 + \varepsilon)n$ and the independence number of G is at most γn, then G has $n/3$ vertex disjoint copies of K_3 when n is sufficiently large and divisible by 3. (Received September 22, 2015)