The total coloring game involves two players taking turns coloring the elements (vertices and edges) of a graph G such that no two adjacent or incident elements of the graph share a color. The first player (Alice) wins if all elements can be colored, while the second player (Bob) wins if some element cannot be colored. The total game chromatic number of G, denoted $\chi''_g(G)$, is the least number of colors for which Alice has a winning strategy on G. Recall that a graph is said to be k-bounded if it allows an orientation such that the maximum outdegree is k. We show for any k-bounded graph G such that the maximum degree is Δ, that $\chi''_g(G) \leq \Delta + 3k + 2$, by providing a winning strategy for Alice. This establishes bounds for the total game chromatic number of outerplanar graphs, and trees, as well as providing a bound for planar graphs, for which no bound had been previously established. (Received September 25, 2017)