A topological space Z is said to be M-separable if for each sequence $\{D_n : n \in \omega\}$ of dense subsets of Z, there is a selection $\{E_n \in [D_n]^\omega : n \in \omega\}$ of finite sets with dense union. We will study the productivity of this property on countable spaces. It is known that countable Fréchet spaces are M-separable, and if we assume the Proper Forcing axiom, the product of two countable Fréchet spaces is again M-separable. We will prove a ZFC version of this result: the product of two analytic spaces that are M-separable and sequential is M-separable. (Received September 21, 2017)