Quantified relevance logics are incomplete for the naïve constant-domain semantics. But they’re complete for the varying-domain semantic theory known as stratified semantics. In this talk I give a constant-domain stratified semantics for contractionless relevance logics. I do so by blending together Fine’s stratified semantics and Restall’s four-valued semantics for contractionless relevance logics. In the resulting semantic theory, the domain of a model comes in two pieces: D and Ω. D contains objects that can be named by individual constants. Ω contains ‘arbitrary objects’ (AOs). AOs are ‘arbitrary’ in the following two senses:

- First, at any level X of the stratification, almost every AO is featureless in all the X-setups.
- Second, if ω is an AO that is featureless at level X, there is a higher level Y where, for any $d \in D \cup \Omega$ that isn’t featureless at X, ω is indistinguishable from d throughout some fragment of the level-Y model.

$\forall x \phi(x)$ is true in a setup s at a level X just when there is an AO ω and a level Y above X such that $\phi(\omega)$ is true in all situations at level Y that are extensions of s. (Received September 15, 2017)