1135-05-1255 Elizabeth Bailey Matson* (eab0052@auburn.edu) and Chris Rodger. Extreme Equitable Block-Colorings of K_v and $K_v - F$.

An *H*-decomposition of a graph *G* is a partition *P* of E(G) into blocks, each element of which induces a copy of *H*. An (s, p)-equitable *H*-coloring of *G* is a coloring of the blocks in *P* with exactly *s* colors such that each vertex *v* is incident with blocks colored with exactly *p* colors, the blocks containing *v* being shared out as evenly as possible among the *p* color classes. The smallest value of *s* for which there exists an (s, p)-equitable *H*-coloring of *G*, denoted $\chi'_p(v)$, is considered for C_4 -colorings of $K_v - F$ where *F* is a 1-factor of K_v ; this will follow from suitable K_2 -colorings of $K_{v/2}$. Of particular interest is when $\chi'_p(v) > p$, in which case traditional edge-coloring proof techniques are rendered useless. The color vector V(E) of an (s, p)-equitable *H*-coloring *E* of *G* is defined to be $(c_1(E), c_2(E), \ldots, c_s(E))$, arranged in non-decreasing order, where $c_i(E)$ is the number of vertices in *G* incident with a block of color *i*. In all cases where $\chi'_p(v) > p$, the extreme values of V(E) are considered, namely $c_1(E)$ and $c_s(E)$. An overview of recent findings is presented, utilizing in some cases the powerful proof technique of graph amalgamations. (Received September 20, 2017)