The Matroid Intersection Conjecture, proposed by Nash-Williams in 1990, is the extension of the well-known finite matroid intersection theorem of Edmonds to infinite sets. The conjecture is still open; however, some special cases were proved to be true. We introduce a new methodology to approach the conjecture that is inspired by the proof of the general version of König’s Theorem for bipartite graphs. We develop new techniques that generalize the critical set approach used in the proof of the countable version of König’s Theorem. Our results enable us to prove that the Matroid Intersection Conjecture is true for a pair of singular matroids on a set that is infinitely countable. Note that a matroid is singular when it is a direct sum of matroids such that each term of the sum is a uniform matroid either of rank one or of co-rank one. (Received September 26, 2017)