We study the Selmer varieties of smooth projective curves of genus at least two defined over \(\mathbb{Q} \) which geometrically dominate a curve with CM Jacobian. We extend a result of Coates and Kim to show that Kim’s non-abelian Chabauty method applies to such a curve. By combining this with results of Bogomolov–Tschinkel and Poonen on unramified correspondences, we deduce that any cover of \(\mathbb{P}^1 \) with solvable Galois group, and in particular any superelliptic curve over \(\mathbb{Q} \), has only finitely many rational points over \(\mathbb{Q} \). (Received September 19, 2017)