I refer to the function of Pythagoras that sends n to $s(n)$, the sum of the divisors of n that are less than n. A still-open conjecture of Catalan & Dickson: each orbit in the s-dynamical system (i.e., $n, s(n), s(s(n)), \ldots$) is bounded. Modeling such a sequence as a random geometric progression, Bosma & Kane showed that the average of $\log(s(n)/n)$ for n even is a constant $\lambda < 0$ (and for n odd, it’s $-\infty$). A new result: the average of $\log(s(s(n))/s(n))$ for n even is also λ.

Pythagoras noted 2-cycles in the s-dynamical system, the so-called amicable numbers. It’s been known since 1981 that the reciprocal sum of the amicable numbers is finite, and in 2011 Bayless & Klyve showed this sum is $< 656,000,000$. Recently with Nguyen we improved the bound to 222.

I also report on some new results with Pollack & Thompson on fibers of s. (Received September 09, 2017)