Let $\mathbb{H}^{m \times n}$ be the space of $m \times n$ matrices over \mathbb{H}, where \mathbb{H} is the real quaternion algebra. Let A_ϕ be the $n \times m$ matrix obtained by applying ϕ entrywise to the transposed matrix A^T, where $A \in \mathbb{H}^{m \times n}$ and ϕ is a nonstandard involution of \mathbb{H}. We first give some properties of the Moore-Penrose inverse of the quaternion matrix A_ϕ. Then we consider two systems of mixed pairs of quaternion matrix Sylvester equations $A_1X - YB_1 = C_1$, $A_2Z - YB_2 = C_2$ and $A_1X - YB_1 = C_1$, $A_2Y - ZB_2 = C_2$, where Z is conditions for the existence of a solution (X,Y,Z) to those systems in terms of the ranks and Moore-Penrose inverses of the given coefficient matrices will be presented. Moreover, the general solutions to these systems are explicitly given when they are solvable. (Received September 26, 2017)