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Let A denote an n×n unitarily irreducible complex matrix. Let H1 and iH2 be the hermitian and skew-hermitian parts of

A, and define the polynomial FA(x, y, t) := det (xH1 + yH2 + tI). We define ΓF : F (x, y, t) = 0 in P2(R), whose dual ΓF̂

is called the boundary generating curve. The convex hull of the latter is the numerical range of A, denoted W (A). This

process thus gives a method for going from A to W (A). Lax conjectured in 1958 that that we can also do the reverse:

for a certain type of curve C, there exist symmetric matrices B and C for which G(x, y, t) := det (xB + yC + tI) satisfies

C = ΓĜ. This conjecture was proved in 2005 by Lewis, Parrilo, and Ramana. In 2012, Helton and Spitkovsky completed

the connection by proving that there exists a symmetric matrix S for which FA = FS; in particular W (A) = W (S). In

this talk we give a concise proof of the following generalization: For any factor g of FA, there exists a symmetric matrix

T for which FT = g. We will analyze examples of these factors and how the curves they define can intersect.
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