Let k be a field of characteristic not 2 or 3. Let V be a 2-dimensional vectorspace over k, and let $k < V >$ be its tensor algebra. The binary cubic generic Clifford algebra C is the quotient of $k < V >$ by the ideal generated by elements of the form $[X, Y^3]$ with X and Y in V. This algebra is known to be AS regular, strongly noetherian, Auslander regular and Cohen-Macaulay. Note that for any binary cubic form, the Clifford algebra associated to f is a homomorphic image of C. Other ring theoretic properties of C will be examined on this poster. It will be shown that the center of C is isomorphic to the coordinate ring of a relative quasiprojective curve over the 4-dimensional affine space that is elliptic over an open subset. This is work in progress. (Received August 15, 2017)