Conway-Coxeter frieze is a lattice of shifted rows of positive integers satisfying the diamond rule: the determinant of any 2x2 matrix formed by the neighboring entries is 1. It is known that cluster-tilted algebras of type A are in bijections with such friezes. In particular, given an Auslander-Reiten quiver of such algebra B we can apply the specialized Caldero-Chapoton map to every indecomposable B-module and obtain a frieze.

Morier-Genoud et al. studied generalized friezes called sl_k friezes, which are lattices of positive integers where the determinant of any $k\times k$ matrix is 1. In a similar manner, we investigate how sl_k friezes can be obtained from cluster categories C associated to the Grassmannian $Gr(k,n)$. In particular, we determine a finite collection of objects in C that can be arranged to produce a frieze. If $Gr(k,n)$ is of finite type we can view the corresponding frieze inside the Auslander-Reiten quiver of C such that 2x2 diamonds in a frieze arises from triangles. (Received September 11, 2017)