In 1993, Gromov introduced the density model of random groups. In this model, we are interested in groups with relators of equal length ℓ. The number of relators is determined by the density d. Properties satisfied by such groups with probability 1 as ℓ tends to infinity are said to hold with overwhelming probability. In this model, many properties exhibit a phase shift at a specific density. For example, random groups are, with overwhelming probability, infinite hyperbolic for $d < \frac{1}{2}$ and trivial for $d > \frac{1}{2}$. Recent work of Ollivier-Wise and Mackay-Przyticki has shown that, with overwhelming probability, random groups at density $d < \frac{5}{24}$ admit a non-trivial action on a CAT(0) cube complex. On the other hand, Žuk and Kotowski-Kotowski have shown that, with overwhelming probability, at density $d > \frac{1}{3}$, a random group satisfies Property (T). This provides an upper bound on the maximal density at which a random group admits a non-trivial action on a CAT(0) cube complex. Recent work hopes to improve the lower bound to $d < \frac{1}{4}$. (Received September 08, 2017)