Let $D = \{z : |z| < 1\}$ be the unit disc on the complex plane \mathbb{C}. Let $a(z), b(z)$ and $c(z)$ be analytic functions on D such that the equation
\[c(z)F''(z) + a(z)F'(z) + b(z)F(z) = 0, \]
has unique solution $F(z)$ satisfying $F(0) = 0 = F'(0) - 1$. In this preliminary work, conditions on $c(z)$, $a(z)$ and $b(z)$ will be investigated so that the solution $F(z)$ is subordinate to \(\frac{1+A_z}{1+B_z}, -1 \leq B < A \leq 1 \). (Received September 22, 2017)