Let \(\overline{R} \) denote a finite bordered Riemann surface, and let \(\Gamma_c(\overline{R}, \mathcal{E}(\overline{R})) \) denote the continuous sections of a flat, matrix \(PU_n(\mathbb{C}) \)-bundle over \(\overline{R}, \mathcal{E}(\overline{R}) \). We write \(\Gamma_h(\overline{R}, \mathcal{E}(\overline{R})) \) for the collection of continuous sections of \(\mathcal{E}(\overline{R}) \) that are holomorphic on the interior of \(\overline{R} \). This is a subalgebra of the \(C^* \)-algebra of continuous sections, \(\Gamma_c(\overline{R}, \mathcal{E}(\overline{R})) \). Our first goal is to calculate the boundary representations of \(\Gamma_c(\overline{R}, \mathcal{E}(\overline{R})) \) for \(\Gamma_h(\overline{R}, \mathcal{E}(\overline{R})) \), in the sense of Arveson, showing that they are point evaluations on the boundary of \(\overline{R} \). Our second goal is to show \(\Gamma_h(\overline{R}, \mathcal{E}(\overline{R})) \) is an Azumaya algebra over its center. Together, these two theorems indicate a sense in which our algebra \(\Gamma_h(\overline{R}, \mathcal{E}(\overline{R})) \) is a nonselfadjoint generalization of an \(n \)-homogeneous \(C^* \)-algebra. (Received September 23, 2017)