A weakly-defined derivation δ^D_w and kernels of $(\delta^D_w)^n$.

Given a (possibly unbounded) self-adjoint operator D acting on a Hilbert space H, an operator $x \in B(H)$ is said to be n-times weakly D-differentiable if for every $\xi, \eta \in H$, the function $t \mapsto \langle e^{itD}xe^{-itD}\xi, \eta \rangle$ is n-times continuously differentiable. Christensen proved that this definition is equivalent to requiring that for all $k = 1, \ldots, n$, we have $x(\text{dom } D^k) \subseteq \text{dom } D^k$ and the k-times nested commutator $[D, \ldots, [D, x]]$ is well-defined and bounded on $\text{dom } D^k$. If x satisfies this condition, we denote the unique extension of the n^{th} nested commutator $[D, \ldots, [D, x]]$ to all of H by $(\delta^D_w)^n(x)$. Nested commutators of this form play a significant role in quantum mechanics. In particular, perturbational computations can be simplified if any number of these nested commutators vanish. In this talk, we will examine how the multiplicity of D affects the kernels of powers of the derivation δ^D_w. (Received September 26, 2017)