Tetrahedron (plural Tetrahedra) is a three dimensional solid having four vertices, four triangular faces and six edges which don’t lie in a single plane. If the tetrahedron T with a six tuple $S= (a, b, c, d, e, f)$ exists if and only if the tetrahedron is facial and the McCrea determinant is positive. If S is a six tuple for tetrahedron T, $S= (a, b, c, d, e, f)$ then the faces a, b, c; a, e, f; b, d, f and c, d, e and the edges at the vertices has the patter a, b, f; a, c, e; b, c, f and d, e, f. If the pattern of faces and vertices of a tetrahedron is interchanged then T is called the Dual of Tetrahedron T however these two tetrahedron are not congruent. Nets which are obtained by cutting three edges of the tetrahedron at a vertex of the tetrahedron or along a sequence of three edges that visit each vertex exactly once. The paper discusses: new findings about the Dual of Tetrahedra & their Nets and Self Dual Tetrahedron. (Received September 04, 2017)