Sapirovskii proved that $|X| \leq \pi \chi(X)^{c(X)\psi(X)}$, for a regular space X. We introduce the θ-pseudocharacter of a Urysohn space X, denoted by $\psi_\theta(X)$, and prove that if X is a Urysohn space then $|X| \leq \pi \chi(X)^{Uc(X)\psi_\theta(X)}$. The Urysohn cellularity of a space X, defined by Schröder, satisfies $Uc(X) \leq c(X)$ and $\psi(X) \leq \psi_\epsilon(X) \leq \psi_\theta(X) \leq \chi(X)$. Note that if X is a regular space then $Uc(X) = c(X)$ and $\psi(X) = \psi_\theta(X)$.

We also introduce new cardinal invariants: θ-$aL(X)$, θ-$aL'(X)$ and $t_\epsilon(X)$ in order to prove that if X is a Urysohn space then $|X| \leq 2^{\theta$-$aL'(X)t_\epsilon(X)\psi_\theta(X)}$ ('). As θ-$aL(X) \leq aL(X)$ and $t_\epsilon(X)\psi_\theta(X) \leq \chi(X)$, this represents an improvement of the Bella-Cammaroto inequality $|X| \leq 2^{aL(X)\chi(X)}$. The invariant θ-$aL'(X)$ is constructed by using maximal filters on the family of finite intersections of regular closed sets. Finally, we introduce a new class of topological spaces called weakly H-closed, a property related to H-closedness. It follows from (') that if X is a Urysohn, weakly H-closed space then $|X| \leq 2^{\chi(X)}$. (Received September 23, 2017)