1135-55-2335 Greg Dreifus* (gdreifus@mit.edu), Department of Mechanical Engineering, 35-214, Massachusetts Institute of Technology, Cambridge, MA 02139, and Fred Cohen (cohf@math.rochester.edu), Department of Mathematics, University of Rochester, Rochester, NY 14625. A Topological and Algebraic Model for 3D Printing. Preliminary report.

The purpose of this project is to give a model, which we call $AM^1(C, L)$, for 3D printing as follows. Consider the set of ordered pairs (\vec{a}, \vec{b}) , where \vec{a} is in the graph C = (V, E) embedded in \mathbb{R}^3 , where V and E are the typical vertex and edge sets in graph theory, \vec{b} is in the x-y plane, and the distance between them is some fixed distance L. Let $AM^1(C, L)$ be topologized as a subspace of Euclidean space. We prove that the fundamental group is a product in non-singular cases and that $\pi_1 AM^1(C, L) = \pi_1(C)$ in singular cases. We examine the connectedness of a subspace of $AM^1(C, L)$, which we call $AM^2(C, L)$, by restricting the position of the line segment connecting \vec{a} and \vec{b} to only intersect with C at point \vec{a} , and we examine the connectedness of a subspace of $AM^2(C, L)$, denoted $AM^3(C, L)$, by imposing a parameterization on \vec{a} . Analogues with multiple linkages using the configuration space of distinct particles in C are also developed. (Received September 25, 2017)