1135-62-1141

Adam Gustafson, Matthew Hirn, Kitty Mohammed, Hariharan Narayanan and Jason Xu^* (jqxu@ucla.edu). A Probably-Approximately-Correct Algorithm for Learning a $C^{1,1}(\mathbb{R}^d)$ Function from Noisy Samples.

One means of fitting functions to high-dimensional data is by providing smoothness constraints. Recently, an efficient algorithm is proposed by Herbert-Voss, Hirn and McCollum that constructs \hat{f} and yields $\operatorname{Lip}(\nabla \hat{f})$ solving the following function approximation problem: given a finite set $E \subset \mathbb{R}^d$ and a function $f: E \to \mathbb{R}$, interpolate the given information with a function $\hat{f} \in C^{1,1}(\mathbb{R}^d)$, the class of first-order differentiable functions with Lipschitz gradients, such that $\hat{f}(a) = f(a)$ for all $a \in E$, and the value of $\operatorname{Lip}(\nabla \hat{f})$ is minimal.

We address statistical aspects when reconstructing \hat{f} from noisy data: we observe samples $y(a) = f(a) + e_a$ for $a \in E$, where e_a is an IID noise term. We obtain uniform bounds relating the empirical risk and true risk over the class $\mathcal{F} = \{f \in C^{1,1}(\mathbb{R}^d) \mid \operatorname{Lip}(\nabla f) \leq \widetilde{M}\}$, where the quantity \widetilde{M} grows with the number of samples at a rate governed by the metric entropy of the class $C^{1,1}(\mathbb{R}^d)$. We provide a solution method via Vaidya's algorithm, supporting our results via numerical experiments on simulated data. (Received September 20, 2017)