In this talk, we describe an efficient finite element treatment of a variational, time-discrete model for dynamic brittle fracture. We start by providing an overview of an existing dynamic fracture model that stems from Griffith’s theory and based on the Ambrosio-Tortorelli crack regularization. We propose an efficient numerical scheme based on the bilinear finite elements. For the temporal discretization of the equations of motion, we use generalized α—time integration algorithm, which is implicit and unconditionally stable. To accommodate the crack irreversibility, we use a primal-dual active set strategy, which can be identified as a semi-smooth Newton’s method. It is well known that to resolve the crack-path accurately, the mesh near the crack needs to be very fine, so it is common to use adaptive meshes. We propose a simple, robust, local mesh-refinement criterion to reduce the computational cost. We show that the phase-field based variational approach and adaptive finite-elements provides an efficient procedure for simulating the complex crack propagation such as crack-branching. (Received September 26, 2017)