Gordon Aiello* (gordon-aiello@uiowa.edu) and Wayne Polyzou (polyzou@uiowa.edu). The Stieltjes Moment Problem and Euclidean Relativistic Quantum Mechanics - Scattering Asymptotic Conditions.

One recipe for formulating a relativistic quantum mechanical scattering theory utilizes a two-Hilbert space approach, denoted by \mathcal{H} and \mathcal{H}_0, upon each of which a unitary representation of the Poincaré group is given. Physically speaking, \mathcal{H} models a complicated interacting system of particles one wishes to understand, and \mathcal{H}_0 an associated simpler structure one uses to construct asymptotic boundary conditions on states in \mathcal{H}.

The above considerations lead to the study of the existence of strong limits of operators of the form $e^{\imath H t} J e^{-\imath H_0 t}$, where H, H_0 are self-adjoint generators of the time translation subgroup of the unitary representations of the Poincaré group on $\mathcal{H}, \mathcal{H}_0$, and J is a contrived mapping from \mathcal{H}_0 into \mathcal{H}.

The existence of said limits in Euclidean quantum theories depends on the choice of J and leads to a connection with the Stieltjes moment problem, which concerns the relationship between numerical sequences $\{\mu_n\}_{n=0}^{\infty}$ and the existence/uniqueness of measures $\alpha(x)$ on the half-line satisfying

$$\mu_n = \int_0^\infty x^n d\alpha(x).$$

(Received September 26, 2017)