Peripheral arterial disease is a serious health concern characterized by a full or partial occlusion of a major artery in the systemic vasculature. Following an occlusion, blood supply to peripheral tissues is significantly reduced, causing patients to experience severe pain and reduced mobility. This study uses mathematical modeling to investigate the role of different vascular segments in restoring blood flow following a major occlusion. Vascular adaptations to collateral arteries and the microcirculation distal to the occlusion have been observed to occur on both acute and chronic time scales. Here two chronic vascular responses, arteriogenesis (increased diameter of existing vessels) and angiogenesis (new vessel formation), are investigated in a single vessel and a complex network. By coupling these chronic responses to acute responses, the model provides a framework for understanding the time frame and significance of vascular responses that help restore flow. Preliminary results suggest the number of collaterals increases following an occlusion while fewer vessels distal to the occlusion are required for optimal flow restoration. Ultimately, the model can be used to identify the most important vessels to target for future therapies. (Received September 26, 2017)