Let \(g \) be an integer greater than 1, and let \(b = g + 1 \). For any positive integer \(n \), we consider a generalization of Collatz function:

\[
 f(n) = \begin{cases}
 \frac{n}{g} & \text{if } n \text{ is a multiple of } g; \\
 \left\lceil \frac{bn}{g} \right\rceil & \text{otherwise.}
 \end{cases}
\]

Using this function, we consider a sequence of the base-\(b \) representation of integers, starting with \(b^N \) for an arbitrary large integer \(N \). This talk will show the number of digits in each repeating string of the sequence generalizes the Jacobsthal numbers. (Received September 26, 2017)