The topological complexity of a path-connected space X, denoted by $TC(X)$, is an integer which can be thought of as the minimum number of continuous “rules” required to describe how to move between any two points of X. We will consider the case in which X is a space of configurations of n points on a graph Γ. There are two such configurations spaces: in the first, denoted by $C^n(\Gamma)$, the order of the points on Γ is of importance, while in the second, denoted by $UC^n(\Gamma)$, the order of the points is irrelevant. We will discuss methods to determine the topological complexity of these spaces in the case in which Γ is a tree. (Received September 20, 2017)