Let $S_z(k,r)$ be the least positive integer such that for any r-coloring $\chi : \{1,2,\ldots,S_z(k,r)\} \to \{1,2,\ldots,r\}$, there is a sequence x_1,x_2,\ldots,x_k such that $\sum_{i=1}^{k-1} x_i = x_k$, and $\sum_{i=1}^{k} \chi(x_i) \equiv 0 \pmod{r}$. We show that when k is greater than r, $kr - r - 1 \leq S_z(k,r) \leq kr - 1$, and when r is also an odd prime, $S_z(k,r)$ is in fact equal to $kr - r$. (Received September 22, 2018)